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Many cookstove studies conducted in the field fail to measure meaningful differences

between different stove technologies. Although meaningful differences do not always

exist, significant differences are often missed because of low statistical power. A numerical

model has been developed to determine the minimum sample size necessary to ensure

that cookstove field studies are well-designed, efficient, and have adequate statistical

power to characterize the concentrations of pollutants inside homes. The numerical model

uses a Monte Carlo prediction method to generate probabilistic distributions of indoor

pollutant concentrations. The model is based on a series of user inputs, including emis-

sions rate, home size, air-exchange rate, fuel-moisture content, and measurement error.

Application of this model to an example situation showed that, even under optimistic

measurement conditions, a substantially high number of test replicates would be required.

This approach should allow organizations to select appropriate sample sizes to test

cookstoves in the field and to identify factors that contribute to variability among tests.

© 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Improved biomass cookstoves are needed as emissions from

traditional cookstoves often have detrimental health and

climate effects [1e4]. As nearly three billion people currently

use biomass cookstoves, the cookstove problem will require

global initiatives and collaborations among many organiza-

tions. To help facilitate these collaborations, new testing

protocols and standardized practices for sharing data have

recently been adopted. One example is the International

Workshop Agreement (IWA 11:2012), which was developed

through the International Organization for Standardization
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(ISO) to help rate and compare cookstoves [5]. Discrepancies

are often seen between evaluations of cookstove performance

conducted in the laboratory and those evaluated in the field.

Thus, there is concern that new cookstove designs are not

achieving the goals of improving health and climate. As part of

the IWA, a resolution was passed to prioritize research that

seeks to harmonize laboratory-based evaluations with field

evaluations of cookstove performance.

The goal of the IWA field-testing resolution is to ensure

that improved cookstove designs, many of which have been

designed in the laboratory, actually release fewer harmful

emissions than traditional designs. Evaluating cookstoves in

the field presents many challenges, including determining the
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number of test replicates required. A sufficient number of

replicates is needed to determine if meaningful differences

exist between different stoves. However, an unnecessarily

large sample size consumes program resources and may not

provide additional useful knowledge [6].

Every cookstove program will have an upper limit to the

number of test replicates they can collect. The limitation

may be due to cost or practicality, but every project will have

a limit. As sample size increases so does personnel needs,

time requirements, and study cost [6]. Although what a

program can afford (time wise and financially) to devote to

field testing is project specific, with increasing sample size

fewer and fewer programswill have the resources needed for

the study.

The sample sizes used by cookstove programs are often

determined by power calculations or general “rules of thumb.”

Power calculations are conducted by setting a target level of

precision and an estimation of the variability between test

replicates to determine the sample size. Sample size “rules of

thumb” are typically generated by power calculations based

on assumptions regarding the level of confidence required and

the variability expected for the type of testing to be conducted.

The World Health Organization and the Gold Standard Foun-

dation are examples of organizations that calculate sample

sizes by “rules of thumb” [7,8].

Although “rules of thumb” are convenient for determining

sample size, they are often based on assumptions that do not

translate uniformly to the field. The accuracy of power cal-

culations is also limited by an understanding of the environ-

mental factors that affect stove performance variability.

These factors vary greatly and include properties such as

room size, air exchange rate, and cultural cooking practices.

Although using “rule of thumb” statistical methods at first

appears convenient, as demonstrated by Edwards et al.

determining an appropriate sample size using this approach is

far from simple. Choosing a study design and sample size

requires investigators to make a number of assumptions,

best-guess estimates, and hard choices [6].

The objective of this work was to develop a user-friendly

method to inform the proper design and implementation of

cookstove field studies. A recent study published by Wang

et al. investigated sample size requirements when testing

cookstoves in laboratory settings. This study clearly demon-

strated the large variability in cookstove performance results

even under highly controlled environments [9]. As discussed

in the previously mentioned article, even highly controlled

tests conducted in sophisticated labs have sources of vari-

ability which cannot be eliminated. The sources of variability

only increase when testing in the field. The model developed

here extends the sample size calculations by considering the

effects of cultural cooking practice, home size, and cookstove

design to allow a more accurate prediction of performance

variability and the number of test replicates required to ach-

ieve statistical confidence when evaluating biomass cook-

stoves in the field.

1.1. Basis for the model

Many factors influence the concentrations of air pollutants

produced by cookstoves [9]. Therefore, to estimate the
required number of test replicates, the major sources of

variability that affect stove performance must be considered.

� Stove variability: The age and condition of a cookstove

can affect performance; every cookstove is unique. Minor

differences in construction can affect performance as

well as age of a cookstove. Therefore, two stove units of

the same design may perform slightly differently, even if

construction and quality control measures are

standardized.

� Fuel variability: Biomass combustion is a complex process.

Small differences in the condition or composition of fuel

can have a large effect on emissions. Many fuel charac-

teristics, including aspect ratio, surface area, moisture

content, and fuel type or species, affect cookstove perfor-

mance [10].

� User variability: The user has a large influence on the

performance of a cookstove. For example, an individual

who is familiar with a particular cookstove will operate it

differently than a first-time user [11,12]. Large variability

will also occur for the same user day to day. In the field,

users often will perform multiple cooking tasks all on the

same stove; often these different cooking tasks require

different operating conditions.

� Situational variability: Situational variability encompasses

many components related to the location at which a stove

is tested. The concentration of pollutants that accumulate

in a room depends on the size and shape of the room and

the airflow through the room, which depends on the

number of open doors and windows [13,14].

� Measurement errors: Although errors in sample measure-

ment do not affect stove performance variability, they do

contribute to the inaccuracy and imprecision of data

collected in the field. Errors in measurement include sys-

tematic and random errors. An inaccurate but consistent

measurement is an example of a systematic error, which

leads to biased results but not necessarily increased vari-

ability between tests. Random errors (in the context of

measurement) arise from the imprecision of an instrument

or variable measurement readings. An increased number

of replicates can reduce imprecision due to random errors

[15].

These factors interact in a complex fashion that compli-

cates field-based measurements of biomass cookstove per-

formance. However, because these factors (and their

interactions) are stochastic in nature, they may be modeled

numerically.Monte Carlo is an attractivemethod formodeling

biomass cookstove performance, as it accommodates com-

plex interactions between various input variables. The Monte

Carlo method has been applied to many fields and disciplines,

such as synaptic signaling in the brain [16] and economic

planning [17].

Monte Carlo simulations are typically comprised of three

elements (Fig. 1). First, equations are established for basic

interactions in the system, such as how emission rate affects

pollutant concentrations inside a home. Second, key param-

eters of the model are defined as distributions, such as the

range of home sizes in a particular community. Finally, a

distribution of outputs is created by randomly selecting values

http://dx.doi.org/10.1016/j.biombioe.2014.10.031
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Fig. 1 e Illustrative example of Monte Carlo model

interactions.
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from all of the input distributions to calculate results in an

iterative fashion.

A Monte Carlo method was selected, as it is suitable for

highly stochastic data and has previously been shown to es-

timate cookstove performance accurately [14,18]. Guidelines

published by the U.S. Environmental Protection Agency (EPA)

were applied to help inform development of the Monte Carlo

framework used here [19].
Table 1 e Model input data. Each parameter was defined
as a normal distribution with mean and standard
deviation.

Model input parameter Model inputs ± 1 s.d.

Performance variability Tier 3:

0.49 g * min�1 ± 0.005 g * min�1

Tier 4:

0.42 g * min�1 ± 0.004 g * min�1

Variability between users

adjustment factor

1 ± 0.2

Fuel-moisture variability 15% ± 5%

Room-size variability 30 m3 ± 2.1 m3

Air-exchange-rate variability 15 h�1 ± 3 h�1

Measurement error 1 ± 0.1
2. Methods

2.1. Modeling overview

A Monte Carlo model was developed to estimate the distri-

bution of performances for Tier 3 and Tier 4 (defined by the ISO

IWA 11:2012) [5] cookstoves that are going to be deployed in

the field. Cookstove performance can be evaluated in many

ways. We defined performance as the concentration of indoor

carbonmonoxide (CO) produced by the cookstove. Parameters

included stove emission rates, sources of variability that

affected emissions (both known and estimated), and param-

eters that interacted with emissions to affect CO concentra-

tions in the room. The model was applied to estimate the

number of statistical replicates required to determine mean-

ingful differences among different cookstoves tested in the

field. The modeling approach, which included various sub-

models, is described below.

Although themethodology presented here could be used to

compare any number of cookstoves, a decision was made to

illustrate the approach using Tier 3 and Tier 4 cookstoves. This

decision was not made arbitrarily. The Tier 4 designation is

intended to represent an aspiration goal for cookstove pro-

grams. The Tier 3/4 boundary is based upon World Health

Organization (WHO) recommendations for personal exposure

to carbon monoxide and particulate matter [5]. To date very

few (if any) cookstoves have been shown to reliably achieve

Tier 4 performance [20]. If cookstove programs are going to use

the Tier 4 designation to indicate a particular design meets

WHO indoor air quality recommendations (and Tier 3 does

not) it will be important that the distinction between the

cookstove can be backed up with field data.

The first step to establishing an estimate of indoor CO

concentrations was to define the distribution of CO emission
rates. The model included a set of nominal emissions rates

(i.e., each rate was specific for a given type or Tier of stove)

(Table 1). The model also considered three sources of vari-

ability, which were stove variability, fuel variability, and user

variability (Fig. 2). Each variability term was modeled as a

finite probability distribution (Table 1). These distributions

were sampled (following a typical Monte Carlo approach) to

produce a subsequent distribution of pollutant-emissions

rates. Carbon monoxide was selected as an illustrative case

and is the onlymetric of performance explored here; however,

a similar approach could be used to evaluate particulate

matter and fuel use. Fuel usewas excluded as it is fairly simple

and trivial calculation (in comparison to emissions). Fuel use

does not require accounting for room concentration, which

greatly simplifies the calculation although the framework

presented could certainly be used. Evaluating particulate

matter would require all the same model parameters as car-

bon monoxide but would typically have greater variability in

the emissions values used. This larger variability would only

increase the same size required, as such the sample sizes

calculated in the illustrative example represent a base-case

scenario.

Estimates of indoor air quality were based on these emis-

sions rates and an air quality model that considered two

additional parameters: room volume and air-exchange rate

(Fig. 3). These parameters were incorporated into a single-

zone, mass-balanced box model to calculate steady-state CO

concentrations. Boxmodels require a number of assumptions,

including that the pollutants are derived from a single source

and are perfectly and instantaneously mixed. Johnson et al.

applied and validated a similar approach against experi-

mental data [14].

dC_i/d_t ¼ (m_dot(t)�Q(t) * C_i)/V

where:

_m: emissions rate of pollutant i

V: room volume

Q: air-exchange rate

C: concentration of pollutant i in room

t: time

http://dx.doi.org/10.1016/j.biombioe.2014.10.031
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Fig. 2 e Schematic of performance variability sub-model.
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2.2. Model parameters

Six input parameters were included in the model (Table 1).

The values for each parameter (and the corresponding stan-

dard deviations) were established from published data where

possible. Themodel assumed a Gaussian distribution formost

parameters. In reality, many distributions were not Gaussian.

However, because normal distributions have smaller standard

deviations than other distributions, the number of required

test replicates is minimized [21]. As such, this model repre-

sents a best-case scenario.
2.3. Performance and user variability

Cookstoves have variable performance levels. This vari-

ability can occur for many reasons, including slight differ-

ences in construction and operator-dependent factors such

as cooking task. In addition, the user is often multitasking

(examples could include watching children, cleaning,

working on a home business, etc) which draws their atten-

tion away from the stove. These tasks often change day to

day resulting in variability for each user. It is difficult to

separate the relative contributions of cookstove and user

variability. Our model accounted for these two sources of

variability by including two input parameters. The first

parameter accounted for variability associated with the

physical cookstove. The results of tests conducted by Jetter

et al. were used to establish an estimate of cooking vari-

ability based on the standard deviation of test replicates in a

highly controlled testing environment. Data from tests in

which the stoves were carefully tended were considered

[20,22]. Cookstove variability was estimated from the most

consistent tests performed by the EPA [20]. CO emissions

rates fluctuated by more than an order of magnitude for
Fig. 3 e Schematic of the sub-model for indoor air quality.
different cookstove designs. Measurements included varia-

tions in stove performance and variations in measurements.

For this study, it was assumed that the EPA data had very

little measurement variability due to the highly controlled

testing environment.

The second parameter for estimating cookstove variability

was the difference between users. Biomass cookstove per-

formance depends strongly on how a stove is used; each in-

dividual uses a cookstove somewhat differently. The

variability between users was estimated by comparing total

carbonmonoxidemass emissions fromWater Boiling Test [23]

results conducted at different facilities. Each laboratory

independently operated a traditional three-stone fire

[20,24,25]. Variability between users was estimated by the

standard deviation of these independent studies. Due to lim-

itations in the data that is currently available estimates of user

variability also includes instrument measurement variability

and physical stove variability. The data to decouple these

factors is not currently available; however, future work is

planned to investigate variability between userswhen all tests

are conducted using the same emissions hood and the same

cookstove. The estimate for user variability is likely conser-

vative. Real world variability would typically be greater than

the estimates used expect in highly controlled and prescrip-

tive style field tests.
2.4. Fuel-moisture variability

Emissions from a cookstove are strongly influenced by the

type of fuel, particularly the moisture content [10,20,26]. The

emissions rates will increase above or below some optimum

value of fuel moisture [26,27]. Fuel moisture content is the

mass fraction of water contained in fuel [28]. The content of

fuel moisture depends onmany factors, including how long a

fuel has been drying, ambient temperature, humidity, and

how the fuel has been stored. Within the same community,

fuel which has been left in the rain can have substantially

higher moisture content then fuel stored in a warm and dry

location. A prediction of fuel-moisture content (for seasoned

fuel) was established by considering a range of ambient

temperatures and humidity conditions [29]. An adjustment

factor for the effect of fuel-moisture content on emissions

was established by considering empirical data on emissions

at different moisture contents [26,27] (Fig. 4). By knowing

typical fuel moisture contents seen in the field and the effect

of fuel moisture on emissions, an adjustment factor was

calculated.
2.5. Room size and air-exchange rate

The volume and air-exchange rate of a room (or home) vary

with climate and location. Representative room sizes and air-

exchange rates were established through a literature review

[30e43]. A baseline room size and air-exchange rate was

defined by considering the average room size in multiple lo-

cations around the world. Input distributions were estab-

lished for room volume and air-exchange rate by considering

the variability that is typically observed at a single location

[33,39,42].

http://dx.doi.org/10.1016/j.biombioe.2014.10.031
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Fig. 5 e Histogram of estimated steady-state carbon

monoxide concentrations produced by Tier 3 and Tier 4

cookstoves. Shown in the insert are the original emissions

distributions of the Tier 3 and Tier 4 cookstoves.

Fig. 4 e Emissions rate adjustment factor based on the

effects of fuel-moisture content on emissions and the

distribution of moisture contents. The emissions

adjustment factor was found by weighting the effect of fuel

moisture content on emissions rates [21,22] with the

probability of different fuel-moisture content occurring

[23].
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2.6. Measurement error

All instruments have some uncertainty/error associated with

them. Many factors, including instrument quality, how the

instrument is operated, and maintenance of the instrument,

can affectmeasurement error. The accuracy of the instrument

can also depend on the magnitude of the reading. Our model

included a conservative assumption that the variability

associated withmeasurement error had a normal distribution

centered at approximately 0% (i.e., no measurement error)

with a relative standard deviation of 10%. Instrument error

can vary widely, but 10% was selected based on anecdotal

evidence.

2.7. Calculating the required sample size

The numerical model included the input data presented above

and was applied to estimate the number of test replicates

needed to distinguish the performance of a Tier 3 cookstove

from a Tier 4 cookstove in the field. Two sample sizes were

calculated. The first simulation determined the number of

field tests needed to demonstrate that Tier 3 and Tier 4

cookstoves were statistically different based on room-level CO

concentrations. The second simulation determined the

number of tests needed to have confidence that a sample

mean was a close approximation of the true population mean

for indoor CO concentrations.

The number of replicates required to prove a statistical

difference was calculated with p-values from Kolmogorov-

Smirnov test. A detailed explanation of the Kolmogor-

oveSmirnov method can be found in Wang et al. [9]. p-values

were calculated for sample sizes ranging from 3 to 300 repli-

cates per cookstove. For each sample size, iterations were

randomly selected for each cookstove, and a p-value was

calculated. This process was repeated 100 times for each

sample size. The objective was to determine the sample size

that led to at least 80% of the calculated p-values to be less

than 0.05. The selection of ‘80% power’ was selected for this
study based on convention [44, 45]; however, the statistical

power required may depend on the analysis being conducted.

A higher statistical power may be used if there is a need for

greater confidence in the results.

A similar process was used to determine the number of

samples required to estimate the average room-level CO

concentration for a population households using a particular

cookstove. For each distribution, themean of the sample sizes

ranging from 3 to 300 was calculated. One hundred random

samples were selected at each sample size. These simulations

were conducted to determine the sample size forwhich 80% of

the sample means were within 5% of the true population

mean.
3. Results and discussion

The Monte Carlo simulation revealed that Tier 3 and Tier 4

cookstoves produced very similar distributions of room-level

CO concentrations despite having distinctly different emis-

sions rates (Fig. 5). The overlap of CO concentrations was due

to the compounding effect of the different sources of varia-

tion. The overlap of the concentrations has a number of

important implications. First, these results suggest it would

be challenging to identify differences between Tier 3 and Tier

4 cookstoves in the field. The broad distributions and the

overlap in concentrations is one possible explanation for

why many field studies have not found the emissions re-

ductions expected from improved cookstoves. Although the

Tier 4 cookstove resulted in lower average concentrations,

statistically proving this would be challenging. Second, the

broad distribution of results suggests that repeated studies of

the same cookstove design could measure drastically

different indoor air concentrations. If two studies were

conducted on the same cookstove design but in different

communities or during different seasons, their findings

could be drastically different. The variability seen in studies

could be partially explained byminor differences in situation

variables or fuel conditions that may not initially seem

important.

http://dx.doi.org/10.1016/j.biombioe.2014.10.031
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Fig. 7 e Sample size required for 80% of the sample means

to be within 5% of the population mean. Approximately 86

test replicates would be required for both Tier 3 and Tier 4

cookstoves to have sample means within 5% of the

population mean 80% of the time.
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3.1. Sample size required for statistically significant
results

Due to the large overlap between distributions, many test

replicates were required to differentiate the distributions

statistically. The probability of finding a statistically signifi-

cant difference between Tier 3 and Tier 4 stoves for different

sample sizes is shown in Fig. 6. Themodel estimated that each

cookstove would need to be tested 63 times (i.e., 126 tests for

two cookstove designs) to show that they are statistically

different 80% of the time. The combination of 126 tests would

determine if the Tier 3 and Tier 4 cookstoves were different,

but would not determine how they actually performed. If the

testing were intended to quantify the average indoor con-

centration of CO resulting from the cookstoves, approxi-

mately 86 test replicates would be needed for each cookstove

to equal 172 tests for the two stoves (Fig. 7). One hundred and

seventy-two test replicates would be required for both Tier 3

and Tier 4 cookstoves to have sample means within 5% of the

population mean 80% of the time. We selected 80% power

based on convention; however, many cookstove evaluation

programs require greater confidence. To achieve 95% power,

160 test replicates would be required per cookstove to differ-

entiate two stoves; 180 replicates would be needed to quantify

the mean concentration of CO produced by each stove.
3.2. Identifying dominant factors affecting performance
variability

Understanding the factors that control field-testing variability

can help cookstove project leaders to design studies that

require fewer test replicates. Regression plots have been used

to identify the major sources of variability (Fig. 8). For

example, the dominant contributors to testing variability in

our model were fuel-moisture content, air-exchange rate, and

user variability. Thus, strategies that address these factors

would have the greatest effects on reducing the number of test

replicates required.
Fig. 6 e Study power as a function of sample size required

to distinguish a Tier 4 from a Tier 3 cookstove in the field.

Approximately 63 samples would be required for each of

the two stoves (126 samples total) to achieve statistically

significant differences in the measured means 80% of the

time.
How testing variability is addressed depends on the spe-

cific goals of a cookstove evaluation program. To accurately

measure real-world personal exposures, a study might not

need to control any of the testing parameters. In contrast, a

study of practical size that is designed to compare the per-

formances of two cookstoves would probably require some of

the testing parameters to be controlled.

Although there might be large variability in a specific

model parameter, this variability may not have a large effect

on the overall performance distribution. For example, mea-

surement error was highly variable in our model (Table 1) but

was a minor contributor to the variability in overall perfor-

mance (Fig. 8f). Nevertheless, minimizing measurement error

is critically important for quantifying the true population

mean. In our model, we assumed that the instrument [1]:

could over-measure or under-measure by the same amount,

and [2] did so by the same amount at all concentrations.

Neither of these assumptions is typically true. An instrument

that systematically over-measures or under-measures, or one

with a measurement error that is concentration-dependent,

will create bias in the results. This bias is often difficult to

detect.

Completely separating user variability and stove variability

was not possible as different copies of stoves were used at

each testing facility. To separate stove variability and user

variability would require each facility to test with the same

physical cookstove. Although this was not possible within the

scope of this study, round-robin testing has been proposed by

the Global Alliance for Clean Cookstoves [46,47]. The findings

of the Alliance's work will help clarify how much variability

can be attributed to individuals vs. attributed to physical stove

variations.

The model was applied with a steady-state assumption.

Therefore, transient factors, such as cooking practices or non-

steady room air-exchange rates, were not considered. The

effect of excluding time as a factor is important to interpret

the results of the model correctly. Time can influence

numerous aspects of a cookstove, including performance, air-

http://dx.doi.org/10.1016/j.biombioe.2014.10.031
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Fig. 8 e Correlations between steady-state concentrations and select sources of variability. A linear correlation was

assumed in all cases except (b). A second-order polynomial was fit to (b) due to the non-linear nature of the correction factor

for fuel-moisture content.
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exchange rate in the home, and fuel-moisture content.

Cookstove performance can change as a stove ages due to

durability issues or lost components. In addition, air-

exchange rates in homes often vary with seasons because

families open or close windows due to changes in weather.

Equilibrium of fuel-moisture content is also strongly depen-

dent on ambient humidity. The distribution of many of the

input parameters would depend on the time scale that is

considered. However, studies are often conducted within a

short time period, such as within one 24-h period or within

one climate season. When evaluating cookstove performance

within a narrow period of time, these additional factors will

typically be less variable and therefore less influential.
Table 2 e Sensitivity analysis for predicting the number
of test replicates required to quantify cookstove
performance.

Model input
parameter

Coefficient of
variation
used in

sensitivity
analysis (%)

Increase in sample
size required
to quantify

cookstove performance

Performance

variability

1.3 þ2

Fuel-moisture

variability

44.0 þ35

User variability 26.7 þ23

Room-size

variability

9.3 þ5

Air-exchange

rate variability

26.7 þ21

Measurement

error

13.3 þ8
3.3. Model sensitivity to input parameters

A sensitivity study was conducted to evaluate the effects of

changes to specific input parameters on CO concentration

distributions and sample size calculations. To investigate the

feasibility of field testing, the range of performance (i.e.,

standard deviation) is more important than the mean. Input

parameters were adjusted independently by increasing the

standard deviation of each input distribution by 33%. Samples

sizes were then recalculated.

The sensitivity analysis in Table 2 indicated that, although

increased variability in model input parameters increased the

required sample size in all cases, the conclusions and trends

remained consistent. As expected, the dominant variables

that led to testing variability were also the variables to which

themodel wasmost sensitive, i.e., fuel-moisture content, user

variability, and air-exchange rate. This finding suggests that

parameters should be established conservatively and broad

input distributions should be included. Although the calcu-

lated sample size changed by as much as 30% in some cases,

the number of test replicates required to produce statistically

significant results would remain impractically large for many

cookstove evaluation programs.
4. Conclusions

There will always be a need for testing cookstoves in the field.

However, the sampling realities inherent to field testing re-

sults in a number of limitations. Interpreting results from field

tests can be challenging due to multiple sources of variability

that cannot be controlled. Many factors cause variable field
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measurements, restricting what conclusions can be drawn

from these tests. As illustrated by the results presented above,

field testing often may not be appropriate for quantifying

population means or definitively proving two cookstove

models result in different exposures. Although real and sta-

tistically different exposures existed in the simulated field

results, few studies would have conducted enough samples to

prove this difference. However, this does indicate field testing

is not important; if anything it illustrates the importance of

field testing. Field testing can provide (when the study is well

designed) very important information such as how cookstoves

are actually being used and consumer preferences among

many other things. A field study which finds that the perfor-

mance of two cookstoves overlap indicates that the perfor-

mance of those stovesmay not be substantially different, even

if the differences are statistically different.

Theoretical case studies have been explored here to

determine the number of test replicates needed to obtain

statistically robust quantitative results from field tests. These

studies showed that, even when conservative values were

established for input variability, the number of replicates

required to answer some questions could be problematic for

many studies. Performing the number of test replicates

needed to quantify cookstove performance will be difficult for

many cookstove programs, especially for determining if two

cookstoves produce different levels of pollutants. Cookstove

programs with limited time or funding may not be able to

devote the resourced required to collect the number of sam-

ples needed to answer some questions. Some of these ques-

tionsmay be better answered in the laboratory in combination

with a numerical approach, such as the one presented here.

Designing and conducting field tests with cookstoves is an

extremely complex process. The challenges and limitations

need to be understood before beginning a project. Although

field testing is a critical component of a cookstove program,

the feasibility of performing field tests to fully quantify

cookstove performance is questionable. There is a need for

both laboratory and field testing; however, the two methods

cannot be used interchangeably to answer some questions. To

make useful connections between laboratory and field tests,

more realistic views of the variability and limitations of field

and laboratory testing are needed.
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